ENDA EPV542 PROGRAMMABLE AC/DC VOLTMETER

Thank you for choosing ENDA EPV542 Programmable AC/DC voltmeter.
$>54 \times 94 \mathrm{~mm}$ sized

- 3 digits display

Selectable number of decimal point
Easy to use front panel keypad
\Rightarrow Multi-function alarm output for lower and upper limits (NO + NC)
Multi-function alarm setpoints with alarm output (NO)
Communication feature over isolated RS485, using ModBus RTU protocol (Optional)
$>$ Keylock feature
\rightarrow Measuring type can be selected as AC, DC or true RMS (ACDC)
$>$ CE Marked according to Europan Norms.

TECHNICAL SPECIFICATIONS

ENVIRONMENTAL CONDITIONS	
Ambient / Storage Temperature	$0 \ldots+50^{\circ} \mathrm{C} /-25 \ldots+70^{\circ} \mathrm{C}$ (with no icing)
Max. Relative Humidity	80% Relative humidity for temperatures up to $31^{\circ} \mathrm{C}$, decreasing linearly to 50% at $40^{\circ} \mathrm{C}$.
Rated Pollution Degree	According to EN 60529 ; Front Panel : IP65, Rear Panel : IP20
Height	Max. 2000 m

Do not use the device in locations subject to corrosive and flammable gases.

ELECTRICAL CHARACTERISTICS	
Supply Voltage	90-250V AC $50 / 60 \mathrm{~Hz}$; 10-30V DC / 8-24V AC SMPS
Power Consumption	Max. 5VA
Wiring	$2.5 \mathrm{~mm}^{2}$ screw-terminal connections
Scale	
Sensitivity	$0,01 \mathrm{~V}$ (If, ,t $4 P 100$ is selected) $0,1 \mathrm{~V}$ (If, i.t $4 P$ is selected and higher than -100 V , lower from 100 V for input values) $1 \mathrm{~V} \quad$ (If, .5 SP is selected and lower than -100 V , higher from 100 V for input values)
Accuracy	AC $\pm \% 1$ (Full scale) (For square wave form $\pm 2 \%$) DC $\pm \% 1$ (Full scale) RMS $\pm \% 1$ (Full scale) (For square wave form $\pm 2 \%$)
Input Range	$-500 \mathrm{~V} \ldots 500 \mathrm{~V}$ (If ,. .49500 is selected, device breaks down at more than $\pm 1250 \mathrm{DC}$ voltages)
Input Impedance	870k Ω
Frequency Range	DC, $10 \mathrm{~Hz}-200 \mathrm{~Hz}$ (For square wave form $10 \mathrm{~Hz}-70 \mathrm{~Hz}$)
EMC	EN 61326-1: 2013
Safety Requirements	EN 61010-1: 2010 (Pollution degree 2, overvoltage category II)
OUTPUTS	
Output	Relay: 250 V AC, 8 A (for resistive load), $\mathrm{NO}+\mathrm{NC}$
Life Expectancy for Relay	Mechanical 30.000 .000 operation; 100.000 operation at 250 V AC, 10A resistive load.
HOUSING	
Housing Type	Suitable for flush-panel mounting. (According to DIN 43 700)
Dimensions	W54xH94xD68mm
Weight	Approx. 250 g (after packing)
Enclosure Material	Self extinguishing plastics.

While cleaning the device, solvents (thinner, gasoline, acid etc.) or corrosive materials must not be used.

Dimensions

Push mounting the device to the panel; Push the device in direction $\mathbf{1}$, the rall
provide the key to keeping the rail.
For removing the device from rail; Push the rail lock in direction 2 with a Push the rail lock in direction 2 with
screwdriver and pull the device in direction 3 .

\square Equipment is protected throughout by DOUBLE INSULATION
($\begin{gathered}\text { Holding screw } \\ 0.4-0.5 \mathrm{Nm} \text {. }\end{gathered}$

Connection Diagram

\triangle
ENDA EPV542 series voltmeters are rail mounted devices. Make sure that the device is used only for intended purpose. The electrical connections must be carried out by a qualified staff and must be according to the relevant locally applicable regulations. During an installation, all of the cables that are connected to the device must be free of electrical power. The device must be protected against inadmissible humidity, vibrations, severe soiling. Make sure that the operation temperature is not exceeded. The cables should not be close to the power cables or components

If " $5 P$ P input type " 500 " is selected, the measurement terminals $\mathbf{1}$ and $\mathbf{4}$ of the terminals must be connected. Otherwise, measurement will be incorrect.
If " $4 P$ input type " $100^{\text {" }}$ is selected, the measurement terminals $\mathbf{2}$ and $\mathbf{3}$ of the terminals must be connected. Otherwise, measurement will be incorrect.

回 $\underbrace{\text { Made in Turkey }}_{\text {CatıI }}$ SN: xxxxxxxxx

ENDA industrial electronics
EPV542-LV-R-RSI EPV542-LV-R-RSI ROHS

	Re	de	Re.de (rms)
	A $\frac{1}{\sqrt{2}}$	0.000	A $\frac{1}{\sqrt{2}}$
	0.308 A	A $\frac{2}{\pi}$	A $\frac{1}{\sqrt{2}}$
	0.386 A	A $\frac{1}{\pi}$	A $\frac{1}{2}$
	A	0.000	A
	A $\frac{1}{2}$	A $\frac{1}{2}$	A $\frac{1}{\sqrt{2}}$
	$A \sqrt{\frac{d}{T}-\frac{d^{2}}{T^{2}}}$	$A \frac{d}{T}$	$A \sqrt{\frac{d}{T}}$
	A $\frac{1}{\sqrt{3}}$	0.000	A $\frac{1}{\sqrt{3}}$

 for a few seconds, configured numeric value increases faster keylock.

Mode", pressed for 3 seconds continuously, activates or deactivates Used for for a few secondsing the setpoint value and changing parameters. When held down used for

Decrement
Key Programming Key

SETTING UP THE PARAMETERS

(ㅂI) \qquad (V) \qquad (4) ACdC
If (sil) key is pressed, the current value of the parameter appears by flashing on the display.
(a) By using "UP" or "DOWN" navigation keys, selected parameter can be adjusted to the desired value.
(si7) After the setting up the parameters, if set key is pressed again, adjusted parameter name appears on display.

Input Type Selection
If $U 100$ is selected ; By using Max. 100 V input (2nd. and 3th. terminals), Lt.r.r. is hiden in the menu
If $U 500$ is selected ; By using Max. 500 V input (1st. and 4th. terminals), u.t.r.r. is hiden in the menu.If u.t.r.r. is selected ; By using Max. 500 V input (1st. and 4th. terminals), u.t.r.r. value appears in the menu and it can be adjusted between 1 and 9999.

oltage Conversion Rate
Can be adjusted between I (100) and 9999 (/100).
If parameter is changed, upper limit value set to the upper scale value, the the init value set to the lower scale value and hysteresis values are set

($)$

(4) (-)

\triangle

Measurement Method

Can be set as $A C$, $d[$ or $A C d[$. Adjusted measurement method indicated by top of the display LEDs.

Decimal Indicator
If measured value is lower than 10 , it can be shown as (0.000), (0.00), (0.0) or (0).

If measured value between 10 and 100 , it can be shown as (0.00) (0.0) or (0).
measured value between 100 and 1000 , it can be shown as (2.0) or (D).
$d P_{n} t$ value, depending on the measured values and relay parameters can change instantly.

opnt
() (
8dr 5
(1)
6Rid

Samping Time
If $1(i)$ is selected ; sampling time of the measurement is 250 ms , If $2(2)$ is selected, it is 500 ms . If 3 (3) is selected, it is 750 ms . If $4(4)$ is selected, it is 1 second.
Device Address
It can be adjusted between 1-247.

Baud Rate
It can be adjusted as ofF, $1200,2400,4800,9600,19200$ 38400, 57600 and 115200

Out1 Output
It can be adjusted as n.o. or n.c. If n.o is selected, incase of alarm, out relay is activated.

Upper Limit Value

If It $4 P$ parameter is selected as u.t.r.r. , can be increased up to u.t.r.r. value. If selected as $U 100$, can be increased up to 100 value. If selected as $U 500$, can be increased up to 500 value.
This parameter value can not be less than (LOLL - HYS.L HYSU).
Hysteresis Value for Upper Limit
It can be adjusted between 0 and 20 value. This parameter can't be higher than (UPL $1-L O L 1-H Y S L$). When $c t r r$ changed, $H Y S U$ gets the value of 0.1

Delay

$$
\text { It can be adjusted between } 0 \text { and } 900 \text { seconds. }
$$

Lower Limit Value

It can be adjusted between lower scale and upper scale that is specified with c.t r.r parameter
This parameter can't be higher than (UPLL - HYSU-HYSL) value.

Hysteresis Value for Lower Limit

It can be adjusted between 0 and $\operatorname{Ctrr} 15$. This parameter can't be higher than (UPLL - LOLL - HY5U) value. When ctrr is changed, $H 45 U$ gets the value of 0.1

Delay Time for Lower Limit Alarm It can be adjusted between 0 and 900 seconds.

LOCKING \& UNLOCKING KEYPAD

In "Running Mode" , by pressing to key for 3 seconds, keypad locked or unlocked

By pressing to (sity key for 3 seconds, quick menu is entered.

REVISION NUMBER

(3i7) \& () If these keys are pressed and held together, revision date appears as day, month and year
While revision information displayed and if one of the pressed key is released, measured value is displayed again.

DEFAULT SETTINGS

Powered on device by pressing key. dPRr message appears on display and device reset to default settings.

ERROR MESSAGES

(*) There are only it $Y P$, ut.r.r , $t Y P E, d P \cap L, O P L \cap$ parameters in the devices those have no relay.
${ }_{(* *)}$ The $R d r \zeta$ and b Ru d parameters are only in the devices those have modbus.

Measured current value is lower than minimum scale.

ENDA EPV542 DIGITAL VOLTMETER MODBUS PROTOCOL ADDRESS MAP HOLDING REGISTERS FOR R EXTENSION DEVICES

Holding Register Addresses		Data Type	Data Content	Parameter Name	Read／Write Permission	Status Value
Decimal	Hex					
0000d	0x0000	word	Alarm output status	DL 3 P	Readable／Writable	no
0001d	0x0001	word	Input type selection	ルソP	Readable／Writable	u．t．r．r
0002d	0x0002	word	Voltage Conversion Rate	u．t．r．r	Readable／Writable	100
$\begin{aligned} & \text { 0003d } \\ & 0004 d \end{aligned}$	$\begin{aligned} & 0 \times 0003 \\ & 0 \times 0004 \end{aligned}$	word word	$\begin{aligned} & \text { LSW = Low Significant Word Upper limit of the setpoint } \\ & \text { MSW = Most Significant Word } \\ & \text { (Hex. format must be sent 32bit MSW and LSW) } \end{aligned}$	UPLL	Readable／Writable	100.0
0005d 0006d	$\begin{aligned} & 0 \times 0005 \\ & 0 \times 0006 \end{aligned}$	word word	$\begin{aligned} & \text { LSW = Low Significant Word Lower limit of the setpoint } \\ & \text { MSW = Most Significant Word } \\ & \text { (Hex. format must be sent 32bit MSW and LSW) } \end{aligned}$	LOLL	Readable／Writable	0
0007d	0x0007	word	Upper limit of the hysteresis value	HS5U	Readable／Writable	0.1
0008d	0×0008	word	Delay time for the upper limit alarm	dL UU $^{\text {d }}$	Readable／Writable	\square
0009d	0x0009	word	The lower limit of the hysteresis value	H35i	Readable／Writable	0． 1
0010d	0x000A	word	Delay time for the lower limit alarm	dLSL	Readable／Writable	0
0011d	0x000B	word	Measurement method（ $\square=R L, \quad 1=d L, ~ 己=R L d L)$	LSPE	Readable／Writable	RL $d[$
0012d	0x000C	word	Decimal point．（ $0=X, 1=X . X, 2=X . X X, 3=X . X X X)$	dPnt	Readable／Writable	0.0
0013d	0x000D	word	Sampling time of the measurement value．If 1 is selected，it is 250 ms ．If 2 is selected，it is 500 ms ．If 3 is selected，it is 750 ms ． If 4 is selected，it is 1 second．	－PLn	Readable／Writable	4
0014d	0x000E	word	Device address for RS485 network connection． Adjustable between 1－247．	Rdr 5	Readable／Writable	1
0015d	0x000F	word	$\begin{aligned} & \text { Baudrate }(0=\mathrm{Off} ; 1=1200 ; 2=2400 ; 3=4800 ; 4=9600 ; 5=19200 \\ & 6=38400 ; 7=57600 ; 8=115200) \end{aligned}$	bRUd	Readable／Writable	－FF
＊Holding Register Parameter Table（No Relay Models）						
0000d	0x0000	word	Input type selection	ル リP	Readable／Writable	u．t．r．r
0001d	0x0001	word	Voltage Conversion Rate	u．t．r．r	Readable／Writable	100
0003d	0x0003	word	Measurement method（ $\square=R[, \quad 1=d L, ~ 己=R[d L)$	LSPE	Readable／Writable	RLdL
0004d	0x0004	word	Decimal point．（ $0=X . X X, 1=X . X, 2=X$ ）	$\square P \cap t$	Readable／Writable	0.0
0005d	0x0005	word	Sampling time of the measurement value	－Ptn	Readable／Writable	4
0006d	0x0006	word	Device address for RS485 network connection． Adjustable between 1－247．	Rdr 5	Readable／Writable	1
0007d	0x0007	word	$\begin{aligned} & \text { Baudrate }(0=\text { Off } ; 1=1200 ; 2=2400 ; 3=4800 ; 4=9600 ; 5=19200 \\ & 6=38400 ; 7=57600 ; 8=115200) \end{aligned}$	bridd	Readable／Writable	of F

INPUT REGISTERS FOR EPV542－x－xxx－RSI DEVICES

| Input Register
 Addresses | Data
 Type | Data Content | Parameter
 Name | Read／Write Permission |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Decimal | Hex | | -- | Only Readable |
| 0000d | $0 x 0000$ | word | Measured voltage value | |

DISCRETE INPUTS FOR R EXTENSION DEVICES

Discrete Input Addresses		Data Type	Data Content	Parameter Name	Read／Write Permission	
Decimal	Hex					
0000d	0x0000	Bit	Relay output state（0＝oFF；1＝0n）	－－	Only Read	
COILS FOR R EXTENSION DEVICES						
Coil Addresses		Data Type Bit	Data Content Alarm output state（ $0=\cap \circ ; 1=\cap \subset$ ）	Parameter Name DLYP	Read／Write Permission Readable／Writable	Status
Decimal 0000d	$\begin{aligned} & \text { Hex } \\ & 0 \times 0000 \end{aligned}$					Value no

＊Coil and Discrete input parameters are not available in the devices those have no relay
Note 1：DL SP menu parameters can be used as＂Holding Register＂or＂Coil．
Note 2 ：Received＂ModBus input register value＂is multiplying by 1000 （based on $d . P \cap t$ ）and mV value reached．
For example ；
if modbus value is 2842 ，（for $d . P n t=2(0.00)$ ） $28.42 \times 1000=28420 \mathrm{mV}$ ，ie 28.42 V
if modbus value is 2842 ，（for $d . P \cap t=3(0.000)$ ） $2.842 \times 1000=2842 \mathrm{mV}$ ，ie 2.842 V
Note 3 ： $\mathrm{UP} L \mathrm{~L}$ and $L O L L$ value should be written and read in 2 bytes．Calculations in the input register is also valid for that value．
For example ；Read value（for $U P L L$ ）is 150200 and if $d P \cap L=1$ ，this value is actually（150．2）．
It is，150200d（24A88h）；LSW＝4A88h ，MSW＝0002h．

